35 research outputs found

    Meibocyte differentiation and renewal: Insights into novel mechanisms of meibomian gland dysfunction (MGD)

    Get PDF
    This paper reviews our current understanding of age-related meibomian gland dysfunction (MGD) and the role of the nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARĪ³), in the regulation of meibomian gland function, meibocyte differentiation and lipid synthesis. The studies suggest that PPARĪ³ is a master regulator of meibocyte differentiation and function, whose expression and nuclear signaling coupled with meibocyte renewal is altered during aging, potentially leading to atrophy of the meibomian gland as seen in clinical MGD. Study of meibomian gland stem cells also suggest that there is a limited number of precursor meibocytes that provide progeny to the acini, that may be susceptible to exhaustion as occurs during aging and other environmental factors. Further study of pathways regulating PPARĪ³ expression and function as well as meibocyte stem cell maintenance may provide clues to establishing cellular and molecular mechanisms underlying MGD and the development of novel therapeutic strategies to treating this disease

    EPHA2-dependent outcompetition of KRASG12D mutant cells by wild-type neigbors in the adult pancreas

    Get PDF
    As we age, our tissues are repeatedly challenged by mutational insult, yet cancer occurrence is a relatively rare event. Cells carrying cancer-causing genetic mutations compete with normal neighbors for space and survival in tissues. However, the mechanisms underlying mutant-normal competition in adult tissues and the relevance of this process to cancer remain incompletely understood. Here, we investigate how the adult pancreas maintains tissue health in vivo following sporadic expression of oncogenic Kras (KrasG12D), the key driver mutation in human pancreatic cancer. We find that when present in tissues in low numbers, KrasG12D mutant cells are outcompeted and cleared from exocrine and endocrine compartments in vivo. Using quantitative 3D tissue imaging, we show that before being cleared, KrasG12D cells lose cell volume, pack into round clusters, and E-cadherin-based cell-cell adhesions decrease at boundaries with normal neighbors. We identify EphA2 receptor as an essential signal in the clearance of KrasG12D cells from exocrine and endocrine tissues in vivo. In the absence of functional EphA2, KrasG12D cells do not alter cell volume or shape, E-cadherin-based cell-cell adhesions increase and KrasG12D cells are retained in tissues. The retention of KRasG12D cells leads to the early appearance of premalignant pancreatic intraepithelial neoplasia (PanINs) in tissues. Our data show that adult pancreas tissues remodel to clear KrasG12D cells and maintain tissue health. This study provides evidence to support a conserved functional role of EphA2 in Ras-driven cell competition in epithelial tissues and suggests that EphA2 is a novel tumor suppressor in pancreatic cancer

    Loss of tuberous sclerosis complex 2 sensitizes tumors to nelfinavirāˆ’bortezomib therapy to intensify endoplasmic reticulum stress-induced cell death

    Get PDF
    Cancer cells lose homeostatic flexibility because of mutations and dysregulated signaling pathways involved in maintaining homeostasis. Tuberous Sclerosis Complex 1 (TSC1) and TSC2 play a fundamental role in cell homeostasis, where signal transduction through TSC1/TSC2 is often compromised in cancer, leading to aberrant activation of mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 hyperactivation increases the basal level of endoplasmic reticulum (ER) stress via an accumulation of unfolded protein, due to heightened de novo protein translation and repression of autophagy. We exploit this intrinsic vulnerability of tumor cells lacking TSC2, by treating with nelvinavir to further enhance ER stress while inhibiting the proteasome with bortezomib to prevent effective protein removal. We show that TSC2-deficient cells are highly dependent on the proteosomal degradation pathway for survival. Combined treatment with nelfinavir and bortezomib at clinically relevant drug concentrations show synergy in selectively killing TSC2-deficient cells with limited toxicity in control cells. This drug combination inhibited tumor formation in xenograft mouse models and patient-derived cell models of TSC and caused tumor spheroid death in 3D culture. Importantly, 3D culture assays differentiated between the cytostatic effects of the mTORC1 inhibitor, rapamycin, and the cytotoxic effects of the nelfinavir/bortezomib combination. Through RNA sequencing, we determined that nelfinavir and bortezomib tip the balance of ER protein homeostasis of the already ER-stressed TSC2-deficient cells in favor of cell death. These findings have clinical relevance in stratified medicine to treat tumors that have compromised signaling through TSC and are inflexible in their capacity to restore ER homeostasis

    Transcriptome analysis of aging mouse meibomian glands.

    No full text

    Meibomian gland dysfunction: hyperkeratinization or atrophy?

    No full text
    Meibomian gland dysfunction (MGD) is the major cause of evaporative dry eye disease (EDED) and dysfunction is widely thought to mechanistically involve ductal hyperkeratinization, plugging and obstruction. This review re-evaluates the role of hyperkeratinization in MGD based on more recent findings from mouse models. In these studies, eyelids from normal young and old mice or mice exposed to desiccating stress were evaluated by immunofluorescent tomography and 3-dimensional reconstruction to evaluate gland volume, expression of hyperkeratinization markers and cell proliferation or stimulated Raman scattering (SRS) microscopy to assess lipid quality. Results indicate that aging mice show dropout of meibomian glands with loss of gland volume and a forward migration of the mucocutaneous junction anterior to the gland orifice; similar age-related changes that are detected in human subjects. Atrophic glands also showed evidence of epithelial plugging of the orifice without the presence of hyperkeratinization. Mice exposed to desiccating stress showed hyperproliferation of the meibomian gland and ductal dilation suggesting a marked increase in lipid synthesis. Lipid quality was also affected in EDED mice with an increase in the protein content of lipid within the duct of the gland. Overall, age-related changes in the mouse show similar structural and functional correlates with that observed in clinical MGD without evidence of hyperkeratinization suggesting that gland atrophy may be a major cause of EDED. The response of the meibomian gland to desiccating stress also suggest that environmental conditions may accelerate or potentiate age-related changes

    Transcriptome analysis of aging mouse meibomian glands

    No full text
    PurposeDry eye disease is a common condition associated with age-related meibomian gland dysfunction (ARMGD). We have previously shown that ARMGD occurs in old mice, similar to that observed in human patients with MGD. To begin to understand the mechanism underlying ARMGD, we generated transcriptome profiles of eyelids excised from young and old mice of both sexes.MethodsMale and female C57BL/6 mice were euthanized at ages of 3 months or 2 years and their lower eyelids removed, the conjunctival epithelium scrapped off, and the tarsal plate, containing the meibomian glands, dissected from the overlying muscle and lid epidermis. RNA was isolated, enriched, and transcribed into cDNA and processed to generate four non-stranded libraries with distinct bar codes on each adaptor. The libraries were then sequenced and mapped to the mm10 reference genome, and expression results were gathered as reads per length of transcript in kilobases per million mapped reads (RPKM) values. Differential gene expression analyses were performed using CyberT.ResultsApproximately 55 million reads were generated from each library. Expression data indicated that about 15,000 genes were expressed in these tissues. Of the genes that showed more than twofold significant differences in either young or old tissue, 698 were identified as differentially expressed. According to the Gene Ontology (GO) analysis, the cellular, developmental, and metabolic processes were found to be highly represented with Wnt function noted to be altered in the aging mouse.ConclusionsThe RNA sequencing data identified several signaling pathways, including fibroblast growth factor (FGF) and Wnt that were altered in the meibomian glands of aging mice
    corecore